Airborne Dual-Wavelength LiDAR Data for Classifying Land Cover

نویسندگان

  • Cheng-Kai Wang
  • Yi-Hsing Tseng
  • Hone-Jay Chu
چکیده

This study demonstrated the potential of using dual-wavelength airborne light detection and ranging (LiDAR) data to classify land cover. Dual-wavelength LiDAR data were acquired from two airborne LiDAR systems that emitted pulses of light in near-infrared (NIR) and middle-infrared (MIR) lasers. The major features of the LiDAR data, such as surface height, echo width, and dual-wavelength amplitude, were used to represent the characteristics of land cover. Based on the major features of land cover, a support vector machine was used to classify six types of suburban land cover: road and gravel, bare soil, low vegetation, high vegetation, roofs, and water bodies. Results show that using dual-wavelength LiDAR-derived information (e.g., amplitudes at NIR and MIR wavelengths) could compensate for the limitations of using single-wavelength LiDAR information (i.e., poor discrimination of low vegetation) when classifying land cover.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion of Airborne Discrete-Return LiDAR and Hyperspectral Data for Land Cover Classification

Accurate land cover classification information is a critical variable for many applications. This study presents a method to classify land cover using the fusion data of airborne discrete return LiDAR (Light Detection and Ranging) and CASI (Compact Airborne Spectrographic Imager) hyperspectral data. Four LiDAR-derived images (DTM, DSM, nDSM, and intensity) and CASI data (48 bands) with 1 m spat...

متن کامل

Radiometric Calibration of Airborne Lidar Intensity Data for Land Cover Classification

The rapid development of the airborne LiDAR systems paves the way for the use of the LiDAR technology in different bathymetric and topographic applications. LiDAR has been used effectively for digital terrain/surface modelling by measuring the range from the sensor to the earth surface. Information can be extracted on the geometry of the scanned features (e.g. buildings, roads) or surfaces elev...

متن کامل

An Evolutionary Approach towards Clustering Airborne Laser Scanning Data

In land surveying, the generation of maps was greatly simplified with the introduction of orthophotos and at a later stage with airborne LiDAR laser scanning systems. While the original purpose of LiDAR systems was to determine the altitude of ground elevations, newer full wave systems provide additional information that can be used on classifying the type of ground cover and the generation of ...

متن کامل

Object-based Analysis of Lidar Geometric Features for Vegetation Detection in Shaded Areas

The extraction of land cover information from remote sensing data is a complex process. Spectral information has been widely utilized in classifying remote sensing images. However, shadows limit the use of multispectral images because they result in loss of spectral radiometric information. In addition, true reflectance may be underestimated in shaded areas. In land cover classification, shaded...

متن کامل

Reduction of Striping Noise in Overlapping Lidar Intensity Data by Radiometric Normalization

To serve seamless mapping, airborne LiDAR data are usually collected with multiple parallel strips with one or two cross strip(s). Nevertheless, the overlapping regions of LiDAR data strips are usually found with unbalanced intensity values, resulting in the appearance of stripping noise. Despite that physical intensity correction methods are recently proposed, some of the system and environmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014